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GENERAL TECHNIQUE FOR THE SOLUTION OF NONHOMOGENEOUS LINEAR PROBLEMS 
FOR SYMMETRIC MECHANICAL SYSTEMS* 

M.L. BURYSHKIN 

A technique for simplifying the computation of the stress-deformed state of a linear 

symmetric mechanical system affected by nonsymmetric loads is studied. A nonhomo- 
geneous equation formulated in general form encompasses a variety of problemsinthe 

mechanics of deformed body. The statement of the problem, individual results, and 
stages of the proposed technique are illustrated by discrete methods and the two- 
dimensional problem of the theory of elasticity. 

1. Abstract statement. Let us consider an elasto-linear mechanical system Sin a 
region Q and formulate a nonhomogeneous problem for it which reduces to the solution of the 
operator equation 

Au=u, UEL,, UEL, (1.1) 

Here L, and L, are given spaces of functions defined on Q, and rl is a linear operator 
defined from L, into L,. The function u describes the stress-deformed state of the system S, 

while the function L: is the specified loads and displacements. For the sake of brevity, uand 
v will be called the state and load functions, respectively. 

Usually, equation (1.1) is not studied directly, but is instead replaced by a formally 

defined resolvent equation 

BC = v, u E L’,, v E L, (1.2) 

where L,'and L2’ are spaces of formalized state and load functions, and his a linear operator 

defined from L,’ into Lz’. Here we have the relations 

u = 13,Ii, v = B,v (1.3) 

We will understand by U, and Bz well-known linear operators defined from L,'into L,and 

L, into L,’ . Since elements from the null-spaces of the operators n,i?, and B, are not of 

interest in most problems in the mechanics of deformed bodies, their selection will henceforth 

depend upon considerations of compactness in the presentation. 

Let us consider three examples of this formalization which are widespread and which we 

will study below. 

Discrete methods. In place of p, we will use a discrete (net-point) region. The 

operator B, replaces the load by forces concentrated at the nodes of the net, and replace the 
function v by the vector v whosecomponentsdescribethe specified forces and variables at the 

nodes. 

The operator B, is responsible for a gradual transition from the components of the vector 

u to values of the components of the stress-deformed state at the network nodes and their 

interpolation at other points of the region 9. 

The finite-dimensional spaces L1' and L,' merge into a single space L'. The selection 

of the coordinate axes and the unknowns by the calculator essentially defines a basis in L'. 

The operator Bis replaced by a matrix corresponding to it in the spaces and the resolvent 

equation (1.2), by a system of linear algebraic equations. 

Plane problem of elasticity theory for an isotropic medium /I/. The planein 
which the region Q is located is assumed to be the complex plane, and z=si- iy is the affix 

of points with coordinates z and y. In place of (1.2) we have 

K,p (tp) + K, [tp(pl + J)l = fp @p) (P = 1, 2, ., No) (1.4) 
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The solution of nonhomogeneous linear problems 637 

where K, and K% are coefficients that depend upon the boundary conditions; No is quantity of 
paths forming the boundary of Q,pis number of path; ip is a point on p-th path; and cp(z)and 
*p(z) are the Kolosov-Muskhelishvili complex potentials analytic in R. The abstract concepts 

introduced above here assume the following meaning: U = (u (z), J, (z)), V = (fp (tp))i&. The operators 
B,B, and B, are described by equations (1.4), the relation between the complex potentials and 
the components of the stress-deformed state, and the relation between the load and functions 
fr, (to), respectively. 

Plane problem for anisotropic medium /2,3/. The formalization applied here is 
similar to the above. The equations 

ZReIIC,,W, (&l) + J&w, @?&)I = fP, (hd (P = 1, 2,. . ., zi*; T = 1, 2) (1.5) 

are the resolvent equations, where Rj,.(j,r = 1,Z)are coefficients that depend upon the boundary 
conditions 

"j=s+~jy (1=1,2) (1.6) 

Wj(Zj) are the Lekhnitskii complex potentials which are analytic in the region Qj, and both 
621 and tllj are obtained from a and tp by the transformation (1.6). Here 

2. Symmetry of mechanical systems 141. A motion in space in which a system S 
reaches a position indistinguishable from its initials position is said to be an element of 
symmetry of the system. The elements include a turn C, (m = O.l,...,n - 1) about an n-th 
order axis, a reflection @in some plane, a translation (parallel motion) T,,,9,, (m,, m2, 
m3 = O.&l,+& . ..) by a vector nf,a, -t m2a2 f m3a3, where a,, as and a3 are the basicvectors, 
atrivialmotion e = Co = T ,o,,andsoon.For these elements of symmetry , we introduce the opera- 
tion of multiplication, taking their composition as a product. Then the set G of elements of 
symmetry is a group, 

A mechanical system s with symmetry group G may be partitioned into identical parts, or 
elementary cells, such that because of the effect of some nontrivial element ggG, each of 
the cells is made to move, and combine with some other cell. These parts may be conveniently 
"enumerated" by means of the symmetry elements. We fix some cell se and call it the funda- 
mental cell, while the cell obtained from S'by the motion geG is denoted s", i.e., SS =: 

gS". We partition this region 8 into cells Q"(g=G) assuming that cell Sg is in Qg. 
The values of the components of the stress-deformed state and the loads described for the 

functions u and v depend upon the system of coordinate axes. In the case of a symmetric con- 
struction, we will use an invariant system, which is understood to consist in the introduc- 
tion into each cell Qg of 61 a local frame of reference w8 = go" obtained from oc of the funda- 
mental cell by the motion g. 

We alter the construction S by an element of symmetry g. In this case the stress-de- 
formed state at any fixed point of the construction remains invariant, though the point itself 
moves relative to region a.We let zand gzdenotepoints in 
construction coincides with before and after the motion. 

w with which the given point ofthe 
The stress-deformed state of the 

construction gS is described by the function ug whose values at the point gz~St is equal 
(in an invariant frame of reference) to the value of u at a point z, i.e., I = u(a) or 
~(~(2) = u(g-'2) where g-l is the motion inverse to the element g, 

We introduce an abstract rule for the effect of the element gf C on any function 1?de- 
fined on 62, assuming that the function gF = F, as a result of this operation, such that 

F, (z) = F (g-b) (2.1) 

Let us stress the mechanical interpretation of rule (2.1) : gu and gv are functionsofthe 
state and load in the construction gS. Such an interpretation is convenient for explaining 
the basic properties of a nonhomogeneous problem caused by the symmetry of the mechanical 
system S. 

Property 1. If uEf,(vE&), then guEL,(guEL,). 
In fact, the spaces A, and gL, of the state functions &' and gS coincide because of the 

"indistinguishability" of the latter. Moreover, the equation Au g = u,is satisfied, 
with (1.1). 

along 
Hence: 

Property 2. & = g-4. 
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3. Generalized symmetry problems. The symmetry properties functions defined on a 
region Qwith symmetry group G are highly varied. They may be described with maximal complet- 
eness and meaningfulness by means of the special apparatus of irreducible representations of 

groups /4/. 

BY an mkv-dimensional irreducible representation 7kv of a group G we will understand 
a set of given unitary matrices Tkv(g) (g= G) of order mkV that possess a number of special 
properties. Any symmetry group has its own, known set of irreducible representations defined 
in advance. The irreducible representations TkV of a group G may be distinguished by two in- 
dices: a vector index k and a scalar index Y, and k ~0 for groups with a finite number of 
elements. The identity representation only 701, such that mgl =: 1 and T,,~ (g) i-7 1, is the simplest 
of the irreducible representations. 

Every representation rkv describes the symmetry properties of some set consisting of mkv 
functions Fkvp (p =- 1. 2, mk,)which may be transformed according to this representation. The 
latter signifies that any (II-th) function in the set satisfies the conditions 

where Tkvp& (g) iS the pk-th element of the matrix ?kY (g). 
We write down the property (3.1) at some point z ~Q',and also bear in mind equality (2.1) 

and the fact that the matrices rkv(g)are unitary, thereby obtaining 

(3.2) 

From (3.2) it follows that the function FkVp is uniquely defined by classifying all the 

functions FkVP(p = 1,2,...,mkV) on the cell 51” of region 9. 
If the load function in (1.1) occurs in the set transformed by an irreducible represent- 

ation of group G, the corresponding nonhomogeneous problem will be called a generalized 

symmetry problem. By condition (3.1), its solution will always be accompanied by simplifica- 

tions whose nature will be discussed below. Since a symmetric (cyclic, periodic, etc.) load 

is transformed by the representation rol, the ordinary symmetry problem is a particular case 

of the generalized problem. 

4. Simplifications in the generalized symmetric problem. We continuethelist 

of symmetry properties of nonhomogeneous problem. 

Property 3. A state function may be transformed by a representation rkv of a group 

G as the p-th function in a set,it is necessary and sufficient that the load function is 

transformed in the same way. 
Let us prove, for example, necessity. For this purpose, we assume that the function ukV,, 

occurs in the set of functions ~~,,~(p=l.Z. ,.., m,J, transformed by the representation tk,,, and 

introduce the function up= Auk,,@. We operate with the element gtmC on both sides of the 

equality uk, = Aukvrr and also bear in mind property 2 and relation (3.11, obtainingtherequired 

result: 

Property 4. If the formalized functions UkVp (Vkvp)corresponding the functions nkvp (ukVp) 

are written in an invariant frame of reference, they also can be transformed by the represent- 

ation 'ckv. 
Because of our mechanical interpretation of an effect of a motion g on a function, gak,,, 

and gVk, must be understood as the ordinary formalized load function of the construction gS. 

Consequently,glr,,, = B,(~v~~,J, and, based on (3.1), we have 

In proving the remaining parts of properties 3 and 4, arbitrary functions of the null- 

spaces of the operators A and B, must be set equal zero. 
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Property 5. All possible formalized functions Vrvp(Vk,,) from the subspace L&C 

L,' (L&p c L,'). 
This property, which follows from the linearity of the operators g, B, and B,, may be 

used to establish the isomorphic correspondences 

Ukva- u (kv) 
7 vkvl,- v (kv) (4.1) 

between the IL-th state (load) functions transformed by the representation rkv andtheelements 
WV) (WV)) of the given spaces LJk") (L&k")) . 

Basic isomorphism. If F is a function defined on region B,we will understand by FI, 
the function defined on the cell Q' by means of the equality 

F le (z) = F (z), Vz E 52' 

We consider the spaces Lr(kV) and LdkV) formed by all possible sets 

(4.2) 

v’kv’ = {ukvp le,,ml, vckv) = (vkvp le);z (4.3) 

By virtue of expressions (3.2) and property 4, 

L;kv, and L;kv,.. 

these sets are isomorphic tothesubspaces 
Thus correspondence (4.1) are established between the elements that satisfy 

condition (4.3). 
In the case of multiply connected regions a, it is sometimes convenient to use a modi- 

fication of the basic isomorphism. This isomorphism essentially indicates that a formalized 
state function in a number of generalized symmetry problems may be expressed in terms of the 
sets C(n)(7) = 1, 2, . ., mk,,) of certain functions defined on the exterior of the basic bounding 
surface (contour). Then the space with elements 

C('v) = (C'?);' 

may be taken as the L('v) . 

Isotropic medium. We will understand by @) the set of the two functions @(")(I) and 
Y(")(z) analytic on the exterior of the basic contour. A one-to-one relation between the 
Kolosov-Muskhelishvili potentials of the generalized symmetry problem andthe functions @('l)(z), 
FJ)(z)(q = 1,2, . . ..m.) are established by special relations /5/. 

Orthotropic medium. Using a previously presented method /5/ and property 3, the com- 
plex Lekhnitskii potentials in the generalized symmetry problem may be expressed by means of 
functions Wj(zj) analytic on the exterior of the basic contour of region a,: 

(4.4) 

“j”[(- ‘jffl (“j -‘m,,d)l+ TkVpp (Tm,m,C,‘) ~[(-l)m('j-Am,~,j)l) 

A m,mj = mlall + %aal + ELI (m+,, + %a,,) (p= 1, 2, . . . . mtY: i =L 2) 

where C,(m= 0.1) is a rotation about the origin by an angle mn:S,a reflection about the axis 
51 FI(] = i,2) the Lekhnitskii complex parameters; and a,, and o&r= i.2) projections of the 
vector a,. onto the z- and y-axes. In the right side of relations (4.4) we have retained 
terms that correspond to elements g E G. 

Obviously tl(Q = (W,'"' (zl), w,c'l) (2,)). 

Property 6. Under the fixed isomorphisms (4.1), the generalized symmetry problem re- 
duces to the solution of the equation 

B(kv)U(kv) = P(kv) (4.5) 

where the operator Hkv) is determined by the correspondence 

B(kV)V(k+') -BVt,,, (WV) - Vkv,,) (4.6) 

The transition from equation (1.2) to (2.5) constitutes an abstract introduction of 
simplifications into the solution of the generalized symmetry problem. 

Discrete methods. We will use the basic isomorphism as condition (4.1). The dimension 
of the finite-dimensional space .c(~") = L,(~~) = L,("v) is much less than the dimension of L'. Thus, 
equation (4.5) reduces to a system of low-order algebraic equations. The matrix of this 
system corresponding to the operator Bckv) is constructed in Sect.6. 
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Plane problem for isotropic medium. We apply the basic isomorphism to the space 
L& i.e., we set YtLv) = {f(") (t))::;, where I = 11 is a point on the basic contour, and !(P' (t) 
is the right side of the corresponding equation (1.4) written for 
potentials rpkvp 

the load ok,,,,. The required 
(2) and &,(z), which are uniquely defined by the functions f(P)(t) may be found 

from the boundary conditions imposed on the basic contour, generated for each of the loads 
L‘k\.,> 

-- 

We apply the modified isomorphism to the formalized state functions and substitute pre- 
ious expressions /5/ that relate the potentials ykvp 
@) (2) (n = 1, 2, ., mk,), in (4. 7) , 

(2) and I& (z) to the functions CD(") (z) and 
obtaining a system of equations relative to CD(Q)(z) and Y(V) (2). 

This system is a concrete form of equation (4.5) in our problem and describes the correspond- 
ing operator S(kY), 

Plane problem for orthotropic medium. The construction of the operator S'""),i.e., 
the system of equations that determines the functions Wj'"'(Zj) (n= 1,2, . . ..mky. j = 1, 2) in terms 
of the functions frCp) (t) (p = 1, 2, . . ., mk,; r = 1,2),is realized by substituting expressions (4.4) inthe 
equations 

2Re[K,,.W ,LYP (111) + K2PWZkYP (&)I = f,(P) 0) (P = 1. 2, . ‘3 mky; I’ = 1, 2) (4.8) 

Remark. In the systems (4.7) and (4.8), we have used the boundary conditions only on 
thebasiccontour r. Let us now consider the contour Tg= gl?. For this purpose, the boundary 
conditionsinthe generalized symmetry problem have the form 

(BU,,,,)(t~) = Vkvp (tg), Vg E G, Vtg E fg (4.9) 

Since BU,,, E Lar,,,,, using property 4, equality (3.2) and the self-evident relation t8 7 gt, 
we obtainexpression (4.9) in the form 

“‘kv =‘kv 
2 Tkvpp (g) (Buk,,& @) = 2 ?kv,,p (6’) "kvp ct) 

P=l p=1 

(4.10) 

The equations (BUk,,,,)(t) = Vkvp (t) (p = 1, 2, . ., mk,,), constitute boundary conditions of the type 
(4.7) and (4.8), so that after they are solved, equalities (4.10) and, consdequently, the 
boundary condition (4.9), will be satisfied automatically. 

5. General technique. These simplifications of generalized symmetry problems may be 
used also for arbitrary loading of a symmetric mechanical system. In fact, practically any 
load in the construction S with symmetry group G may be represented in the form of a combina- 
tion of components that may be transformed by means of irreducible representations of group G 

/6,7/r and because of linearity, the initial problem may be decomposed into several generaliz- 
ed symmetry problems. 

This technique of studying a nonhomogeneous problem for a symmetric mechanical system 
consists in three stages: (a) decomposition of the load into components that may be trans- 
formed by means of irreducible representations of the symmetry group; (b) solution of equa- 
tions (4.5) for the corresponding generalized symmetry problems; (c) superposition of the 
obtained results. 

If we wish to apply this technique to any new class of problems, it becomes necessary to 
investigate the structure of the spaces L&, and L&, and to construct the particular form of 
the operator BckY). The solutions presented above of such problems for the plane problem of 
elasticity theory of isotropic and orthotropic media may serve as illustration here. The 
principle used to construct the operator B(kv) is also convenient for many other problems in 
the theory of thin and thick, densely perforated plates, shells, etc. A specific approach to 
the solution of these problems for the case of discrete methods may be found in Sect.6. 

In those classes of problems for which necessary isomorphisms and the particular form of 
the operator H(k") have already been established, our technique may be used to greatly reduce 
the number ofinterdependentresolvent equations and, consequently, the volume of the computa- 
tions. A decrease in the number of equations can be seen in all the exampleswehavepresented, 
bearing in mind that the quantity mk, is very small by comparison with NO, the numberofcells 
in the mechanical system. In these examples, we may verify the following estimate of the ef- 
ficiency of our computation technique: the volume of computations necessary for solving a gen- 
eralized symmetric problem may be reduced more than (N,lm~v)2 times. 
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As a rule, the solution of equation (4.5) may be carried out by methods suitable for an 
ordinary symmetric loading. 

6. Discrete methods. It is necessary that the network possess the samesymmetrygroup 
G as the construction S; we enumerate the nodes of the cell p from 1 to N (numberofnodes 
in cell). If n, is the number of degrees of freedom of node zP E 62' (p = 1, 2, . . .,N), then 
u<t,p,g> (t= I,&. . .7 np) is the t-th component of the vector Uat the node gz, E 51". We shall 
assume that the components lJ(t,p,e)and lJ(t,p,g> have the same physical meaning relative in 
the frames of reference o" and 08, respectively, and set 

u = II iJ <g> IlgEG, IJ <g> = II U (~3 g> IIPN,,, U <P, g> = II U <t, P, g> II::, (6.1) 

Note that the node zP may, in general, simultaneously occur in several cells. Despite 
the fact that the number of components in this case is redundant, the structure (6.1) remains 
highly convenient. 

Since the construction Sis symmetric, the operator B maybe completelydetermined by the 
system of algebraic equations 

~&~(e,g)U(g) =V (e>, 11 (e,g> =IIB @e,q,g) H&=1 (6.2) 

where B <p,e,q,g)are given square matrices of dimension np X n,; columns corresponding to re- 
dundant components may be assumed to be empty. 

As we noted earlier, the basic isomorphism should be used as the correspondence (4.1). 
By formulas (4.3), we set 

tikV) = 11 UCkV) (p) I];=,, u(kV) (p) = I/ .P) (p, p) 11;:; (6.3) 

dkv’ (P, P> = Ukvp (P, e) 

Let us consider the construction of the basis in the 
WV) (p). For this purpose, we assume that GPcG is the 
elements g”EG that leave the node zp unchanged. Since 
to all cells Qg(geGP), the following type of relations 

nP 
z h$'(g?U (4, p, e> = s h$"@) G (q,p,g? 
g=1 *=1 

space L+') <p), formedbythe subvectors 
group of node % i.e., the set of 
this node must belong simultaneously 
hold between the components of U: 

(t = 1, 2. . , np) (6.4) 

where hpI(p)(gp) and hpt@')'(gP) are given certain scalar coefficients. 
Using the relations (3.2) and the subvector U(kv)(p), from (6.3) we obtain 

bkv(e) X HP(gP)l UC") <q) = [Tkv(g”) X H,'(& UC"') (p: (6.5) 

after elementary transformations of the equalities (6.4), written for the components of the 
vectors UkV& (p = 1, 2, . . .,mkv). 

Here Hp(gp) and HPf(gp)are square matrices of order nP compiled from the coefficients 
hqt@) (gp) and h#)'(g") (q, t = 1,. ..,rzp)_ while the symbol r%kv (g) ,: HP(g)1 denotes the tensor product 
of the corresponding matrices. 

From (6.5), it follows that the subvectors Ukv) (p) must satisfy the equations 

@6Ly) (gP) UCkV) (p) = 0 (6.6) 

.;kv' (@) = [U(e) X HP (&?)I - [Tkv (f) x H,’ (g’)] 

and, consequently, occur in the intersection of the null-spaces of the matrices mp'kv)(gp) X 
(gp E G") . By the reverse reasoning, we may prove that the components of any vectors in this 
intersection satisfies equations (6.4). Thus, the space Ltkv)<p) constitutes the intersection 
of the null-spaces of the matrices Qp(kV) (gP) (gP E cp). 

The foregoing allow us to, 
Suppose that Rkvp 

in fact, construct bases in the spaces L(kv) <p),L(W and _!&p. 
is the dimension of the space LoLY) <P>, and let the vectors 

Rk,) form an orthonormalized basis in L(kv) <p). 
E,P') <p) (y = 1, 

. . ., We introduce the vectors 

E:'p"'E I?~", E&E &VP (y = 1, 2,... . &vp: p = 1, 2,...,iY) 
determined by the equalities 

E:‘p” (q) = T?PsE;kv) (p), El& (q, P) = E;:’ (p, q) (q = 1,2,...,N) (6.71 



642 M.L. Buryshkin 

where 6,,, is the Kronecker symbol. The systems compiled from such vectors 

{(~"“)a~vP)~~ 'Y!- Ym 1 p 1, cc~l’:i,l.~;“l,:- 1 (6.8) 

constitutes an orthonormalized basis in the space Lck") and an orthogonal basis in !dk,P, respect- 
ively. 

Let us show that the scalar product in the space Lkv,,, which, unlike the oridinary scalar 
product (U, V) is denoted by (U, Q, is given by the equality 

(U, v)G = Mcl(U <g>, v W)l (6.9) 

We will understand by Mea special functional on G (for finite groups, an averaging func- 

tional) introduced previously /8/ and possessing the property 

.- 
)llG fTkvw b?) Tkwm, fdl = ~kk>6vv,&d$&~kv (6.10) 

In this scalar product, the norm of the vectors El&is equal to llf/mk, It follows 

from (6.91, (3.2), (6.7), (6.2) and (6.10) that 
“‘kv 

(Pt, P)) (6.11) 

Now, using techniques of linear algebra we construct the matrix B*(kv) corresponding to 

the operator B(kv) is the basis adopted for space .lJkv, . By (4.6), it must have the form 

HY = II HY' (P, Q) II:,=1 (6.12) 

!?r"' (P, 4) = /I mkv (~J%$‘, El;,& jj,9:!; Rkrq 

Using expressions (6.111, we finally obtain 

Bbkv’ (p, q) = 1) (Diky’ <p, q> .:kv’ (q), I-$? (p>) Ilz;z; RkVq 

of”’ (p, q> =gzc [zkv (g) x B (P> Ed q? g>l 
=x 

Thus, the operator equation (4.5) reduces to the system of algebraic equations 

B'kv)X(kv) = y(kvJ 
* 

X:kv'=fl X!k”’ (p) I&, x(kv) (p) = II XCkV) <v,p) II;zp 

(6.13) 

(6.14) 

(6.15) 

(6.16) 

whose matrix is determined by expression (6.13). In this case 

Y CkV) (p, y) = (VkV’ (p), EiJ=,LV’ (p)) 

u@V) (p) = RT x@-) (y, p) E:ky’ (p> 
y-1 

Example. We construct the resolvent system of algebraic equations for the plane girder 

of Fig.1, which possesses the symmetry group C&,. Rotations C, by angles mn/2 and reflec- 

tions 8, in the planes II,,, (m= 0,1,2,3) are the symmetry elements. In Fig.1 elementary cells 

of the girder are denoted, the nodes in the cell Qe (coinciding with the nodes of the girder) 

are enumerated, and the directions of the unit load forces V,, that occur in the set formed 

by the representation ZM indicated. The unit forces forming the load V,, are shown by the 
broken lines. 

The matrix Gus has the form 

%&,,=I/:, :li? rOS(Q,,)=jlI, _",I(; e=cosq, s=sillF 

Let us present necessary initial data, denoting by lJ(t, P,C) 

the motion of the node gzp~S g in the axial directionwithnumber 

t from the frame of reference eg. In the cell Pa, thenumber 

of nodes N= 2. All the components of the SUbVectOrS u(z,g) (g#e) 

and u<e,)(m =0,1,2,3)will be assumed to be redundant. With this 

in mind, we set 
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Here a,(i= 1, Z,..., 8)are the corresponding rigidity characteristics of the girder. By 

(6.3) and (6-l), Y(Os) = [1, 0, 0, i, 0, 0, 0, 0] and G1 = {e, S,] and G2= C,, are the groups of the nodes 

and respectively. The coefficient matrices compiled from the coupling 
(6?4) and nz:essary for subsequent computations are written as follows: 

equations 

Now, using (6.6), we find the matrix 

@'p(a")(S,) = diag [O, 2, 2, 0] (p = 1, 2) , 

and construct the orthonormalized bases in the spaces I and L(O5) (2). Note that the first 

space is the null-space of (D,@) (S,), while the second is the intersection of the null-spaces 

of the matrices UJ~'~')(S,) and Q~(O~)(@,), so that we have 

R Obl = 2; E,(OS) (1) = [I, 0, 0, 01, E,(CS) (1) = [O, 0, 0, i] 

R obz = 1; Elco5) (2) = [I072, 0, 0, - J,?/Z] 

Moreover, it follows from (6.14) that 

I 

a1 0 0 zn, 

D(,os)(l,i)= 0 0 - za, a2 -2a, II1 0 0 I ' 
2a7 0 0 11% 

S,(05) (1, 2) = diag Ia&, a6, a4, as], 

Using expressions (6.13) and (6.16), we obtain 

a1 2Q 
2a7 aa 

26Za, -2@iz, 

D~)<Z,l) = 

-22a. 0 0 

D,(05) (2, 2> = diag[a,, og, ~,a,1 

the required system (6.15): 

- 

7. Plane problem for isotropic medium. Generalized periodic problems are the 
problems in this class that have received the most comprehensive study. They have been solved 
by the Kosmodamianskii method /9/ and the small parameter method /lo/. 

Fig.2 

Let us show that the general technique 
proposed in Sect.5 can be applied. Using 
previous results /9/ for this technique, 
the concentration of stresses in a medium 
weakened by a regular series of circular 
holes was computed for two cases of loading 
by an internal pressure of intensity Q: 
(a) only the basic contour is loaded; (b) 
all contours, other than the basic contour, 
is loaded. Fig.2 depicts the pathwise 
stress diagrams oe/q (the unit stress dia- 
gram is given by the broken line). The 
upper part of the Fig.1 refers to case (a), 
and the lower part, to case (b). Stress 
diagrams located above (below) the s-axis 
correspond to a value d = 0.4 R(d = R), with 
R the radius of the hole and a? the thick- 
ness of the connecting strip between the 
holes. Note the two qualitative effects: 
there also exist values d, and d,’ such 

that if d<d, and if only a single contour 
is loaded,its stress concentration is less 
that of a neighboring (unloaded) contour, 
while when d<do'for the case of a single 
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unloaded contour, the stress concentration on this contour will be greater than 

ary periodic problem. 
for the ordin- 

A numerical analysis of these effects is illustrated by the curves for the concentration 
coefficient K in Fig.3. Curves 1 and 2 correspond to the basic contour and a neighboring con- 
tour under the load condition (a). Curve 3 represents the difference between the concentration 
coefficients of the stresses on the basic contour for an ordinary periodic problem and for 
loading (b). According to Fig.3, d0=0.8R and d,'z0.4R. 

0 
9.2 0.6 0.8 d 

T 

Fig.3 

These methods of solving generalized periodic problems may 

be used for other symmetry groups. With this in mind,thesmall 
parameter method is quite obvious. 

Expressions for the Complex potentials (Pkvll(z) and %'kvw @) 
have been compiled /5/ for a fixed coordinate system. We write 
them in a new coordinate system with origin at the centerofthe 

main hole, which is obtained from the initial system by parallel 

transfer. By a, (r = 1,2) and D, we will understand the complex 
numbers corresponding to the basic vector a,. and the transport 

vector. 

Following the basic procedures of the previous method /IO/, 

we expand the functions (EL,~ (2) and +kVp(z) in a series in powers 

of the small parameter F = l/a,, and set 

y(rl) @) = i ,q”p (z) 
S=” 

We substitute all these expansions in equation (4.7) and transform them in a series (s= 

0, 1, . .) of systems 

KdP (t) + Kz [tZ$ + Y!P’(t)] = flP’ (t) (p = 1, 2, . . , mkv) (7.1) 

[ 1 + j (is - F3e-lna - m,E, - mai2 - I)] [e-ima (mIel + rn+J + El (1 - e-ima)]-r 

ht~‘)(j+‘) = $2 m,, ii_, lie Tkvpg (Tm,m,Crn@) e-Imps x 

]I + j (E, - s3e-ima - ml& - m2i, - I)] [e-lma (mleI + rn& + is - e3e-ima]-’ 

E~=u~/~u~~, aZ=e2/1a~I, e,= D/lo,(, a= arc/n 

and C,P is the number of combinations of r elements taken p at a time, while the index j takes 

the values 0 and 1, finally the asterisk following the summation sign indicates that terms 

with subscripts m,= rn2 = m = 0 are absent. 
A solution of the system (7.1) for a fixed value of s may be carried out by the 

Muskhelishvili method /l/ and determines the s-th approximation of the required functions 

@('I) (z) and Y(v) (2). 
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